[image: image1.wmf]®

[image: image15.wmf]

Report Number:
TST05I030, Rev. A

Issue Date:
14 February 2006

Software Design Document
for the

CIGI Host Emulator

Version 3.1.x
The Boeing Company

Training and Support Technology

Research and Development

PREPARED BY:
Lance W. Durham

Software Engineer
APPROVED BY:
Carl Vorst
Principal Investigator –Visualization

APPROVED BY:
Willard B. Phelps
Manager – Training Devices IRAD

[image: image16.wmf]

LIST OF PAGES
Title Page

ii through v
1 through 29
TABLE OF CONTENTS

Paragraph
Page
11.
Scope

2.
Purpose
1
3.
Background
1
4.
Application Overview
1
4.1
Main (Win32) Process
1
4.2
Driver
2
5.
Architecture
3
5.1
Inter-Process Communication
3
5.1.1
Events
3
5.1.2
Mutexes
4
5.1.3
Messages
4
5.1.3.1
Shared Message Queues
4
5.1.3.2
Message Types
5
5.2
Data Sharing
10
5.2.1
CSharedEntityObj
12
5.2.2
CSharedViewObj
15
5.2.3
CSharedViewGroupObj
17
5.3
CIGI Message Management
18
5.4
Main Process
18
5.4.1
Data Manager
19
5.4.2
Shared Objects
19
5.4.2.1
CEntity
19
5.4.2.2
CCigiView
20
5.4.2.3
CViewGroup
20
5.4.3
Configuration Templates
20
5.4.4
Script Processor
21
5.5
Driver
21
5.5.1
Threads
21
5.5.2
Main Loop
23
5.5.3
Buffered Record and Playback
25
5.5.4
RTX API Façade
26
6.
Abandoned Designs
27
6.1
Unsynchronized Data Access
27
6.2
Asynchronous Object Creation and Write
27
7.
Acronyms
29

TABLE OF FIGURES

Figure
Page
5Figure 1. Shared Buffer Queue Class Design

Figure 2. HEMU_MESSAGE Base Class
6
Figure 3. Shared Object Base Class Design
11
Figure 4. CSharedEntityObj UML Diagram
13
Figure 5. The ENTITY Datatype
14
Figure 6. CSharedViewObj UML Diagram
15
Figure 7. The VIEW Datatype
16
Figure 8. CSharedViewGroupObj UML Diagram
17
Figure 9. The VIEWGROUP Datatype
18
Figure 10. Driver Thread Sequence Diagram
22
Figure 11. Send/Receive Thread Sequence Diagram
24

TABLE OF TABLES

Tables
Page
3Table 1. Event Kernel Objects

Table 2. Win32-to-Driver Messages
6
Table 3. Driver-to-Win32 Messages
8
Table 4. Win32-to-Win32 Reflexive Messages
9
Table 5. Driver Thread Priorities
23

TABLE OF LISTINGS

Listings
Page
12Listing 1. Compare-And-Set (CAS) Routine

Listing 2. Example Script with Implicit Waits
28

1. Scope

This document describes the main design elements and, where significant development effort has been spent, a few critical implementation details of the CIGI Host Emulator, as well as lessons learned.
2. Purpose

The purpose of this document is to capture the main design elements of the Host Emulator. The document’s primary focus is the higher-level architectural aspects. However, where significant development effort has been spent on overcoming problems or improving performance, these implementation details are described more thoroughly. Unsuccessful design approaches and lessons learned are also discussed.

Note that as CIGI is currently undergoing standardization and maturation activities, the Host Emulator will necessarily evolve with the interface specification. The architecture of the program will likely evolve as well. This document will be updated as needed to reflect design changes to the Host Emulator.
3. Background

The Common Image Generator Interface (CIGI) is an open-standard data interface between a simulation host device and an Image Generator. Boeing originally developed CIGI and currently plays an active role in its maturation and standardization activities. In an effort to promote CIGI as an industry standard and to improve interoperability of CIGI-capable devices, Boeing has released its CIGI tools to the Open Source community. The CIGI Host Emulator is one of these tools.
4. Application Overview

The Host Emulator is a development and test tool for implementing the CIGI interface. Capabilities of the Host Emulator include free-flight, scripting, record and playback of CIGI messages, and a packet-level snoop feature.

Two major versions of the Host Emulator exist. Version 2.x uses the CIGI 2 standard; Version 3.x uses version 3 of the standard. Substantial architectural differences exist between Versions 2.x and 3.x of the Host Emulator. This document focuses on Version 3.x.

The Host Emulator runs as two processes. These are a main application process and a driver. These are introduced below and are described in more detail in Section 5.

4.1 Main (Win32) Process

The main process runs within the Win32 subsystem and provides the user interface and performs most file I/O. This process is responsible for the following:

1. Providing the Graphical User Interface (GUI) for the system

2. Loading CIGI entity, terrain, and view configurations from definition (.def) files

3. Loading/saving network configuration from/to the Windows Registry

4. Loading/saving the simulation state to scenario (.sf3) files

5. Loading and executing script (.scp) files

6. Reading the joystick state

7. Calculating relative waypoint positions

The main process is based on Version 6.0 of the MFC application framework. In addition to providing the main application loop and the Windows message pump, MFC provides for mapping of events, synchronization of threads, serialization of objects (file I/O), and other application-level tasks. MFC also provides views and other windows, controls (widgets), data collection classes, thread synchronization objects, and other useful datatypes. MFC works well with the Win32 API, the Windows Multimedia API, DirectX, GDI, and other Windows-specific programming interfaces.

4.2 Driver

When the main process starts, it will spawn an instance of the driver program. The driver handles calculations of motion, network I/O, and file I/O during record and playback.

The driver is built on RTX by Ardence. RTX is a hard real-time extension to Windows. Information about RTX can be found on the Ardence web site (http://www.ardence.com).

A Win32-only version of the driver can also be built. A façade API has been created to translate the RTX API calls to Win32. See Section 5.5.3 for more information on this façade.

For the RTX version of the Host Emulator, the driver runs as an RTSS (Real-Time Subsystem) process within the RTX environment. For the Windows version of the Host Emulator, the driver runs within the Win32 subsystem. In the latter case, if the Host Emulator detects multiple CPUs it will elevate the priority of the driver to improve determinism.

5. Architecture

The Host Emulator is a test application designed to be used with high-end image generator (IG) devices. In order to truly test IG performance, such a test tool must be deterministic and must not introduce performance inconsistencies of its own.

Because of the performance requirements of the test tool, and because the Host Emulator was developed for the Windows operating system, the Host Emulator’s core is built upon the RTX real-time extensions for Windows. RTX installs a dedicated execution environment called RTSS in which real-time processes run without interference from the Windows kernel. Inter-process communication (IPC) between Win32 and RTSS processes can be accomplished through shared data, events, mutexes, and semaphores.

RTX alone is not suitable for fully interactive programs. RTX provides no mechanisms for graphical output or input from a mouse or keyboard. Access to other system components and devices is limited, was well. The inner workings of the Host Emulator, therefore, are divided among two processes: a main process that provides the GUI and interfaces with DirectX and other system components, and a driver that performs time-critical tasks such as motion calculations and network I/O in a real-time manner.

This section describes the main architectural features of the main process and driver, including the IPC and data-sharing mechanisms between the two processes. Also discussed is the rationale behind the implementation of CIGI message management.

5.1 Inter-Process Communication

Inter-process communication (IPC) between the main process and driver is implemented through kernel-mode events and mutexes and shared, thread-safe message queues.

5.1.1 Events

Event kernel objects are used to communicate events between the driver’s threads. These events are summarized in the following table:

Table 1. Event Kernel Objects
	Event
	Description

	StartShutdown
	This event is signaled by either the Send/Receive thread or the WaitForWin32ToDie thread when the driver should terminate. The Shutdown thread waits indefinitely for this event, and when the event is signaled, released all objects and begins its cleanup procedures.

	EndShutdown
	This event is signaled by the Shutdown thread after all objects are released. The driver’s Main thread then releases this event and terminates.

	StartRecordShutdown
	

	EndRecordShutdown
	

	ReceivedMessage
	

Note that the StartRecordShutdown and EndRecordShutdown events are used for both recording and playback. This is acceptable because execution of the Record and Read threads is mutually exclusive. In fact, both event objects were originally intended to be used with both threads; however, the word “Playback” was omitted from the event names to keep them short.

5.1.2 Mutexes

A single mutex object, Win32ProcDiedMutex, is shared between the driver and Win32 processes at the application level. This mutex owned by the Win32 process and is used by the driver to detect when the Win32 process is terminated abnormally. If this occurs, the mutex will be orphaned. A high-priority thread in the driver (WaitForWin32ProcToDie) will then be released and will signal a StartShutdown event. The driver will then shut down normally. Refer to 5.5.1 for further details.

Mutexes are also used by the shared message queues as described in Section 5.1.3.1 below.
5.1.3 Messages

Events are useful for notifying one or more threads when something has occurred; however, the only information inherent to an event object is the signaled state of that object. Any additional information must be communicated via some other mechanism. Messages are used by the Host Emulator to fill this need.

5.1.3.1 Shared Message Queues

The Host Emulator uses two shared, thread-safe inter-process message queues. One queue is reserved for messages to the main process; only the main thread of this process retrieves messages from this queue. The other queue is reserved for messages to the driver, and only the Send/Receive thread retrieves messages from this queue. Any thread in either process may enqueue (post) messages to either queue.

The message queues are instances of a class called RTXSharedBufferQ. This class encapsulates a circular array of buffer pointers and a circular array of corresponding buffer sizes. The following illustration shows the class structure:

[image: image2.emf]+RTXSharedBufferQ()

+~RTXSharedBufferQ()

+Create(in name : const char*, in buffcount : const long, in buffsize : const long) : long

+GetSize() : long

+GetItemCount() : long

+Push(in buffer : const char*, in length : const long) : long

+Pop(in buffer : char*, in length : const long) : long

-m_bufflengths : long *

-m_size : long *

-m_bottom : long *

-m_top : long *

-m_itemcount : long *

-m_data : char **

-m_instancename : char *

-m_mutex : HANDLE

-m_sharedhdl : HANDLE

RTXSharedBufferQ

BufferPointers [0-n]

BufferLengths [0-n]

Shared Memory

Queue Size

Bottom Index

Top Index

Item count

InstanceName []

Buffer_0 []

Buffer_n []

...

Buffer_1 []

Heap

Figure 1. Shared Buffer Queue Class Design
All data members of the RTXSharedBufferQ class are either handles or pointers to class data. With the exception of the instance name, which is stored on the heap, the class data themselves are stored in shared memory. These include an array of buffer lengths, the size of the queue, bottom and top indices into the buffer array, the number of items in the array, a vector of pointers into the array of buffers, and the actual array of buffers.

Shared memory is reference-counted and uses handles for allocation and de-allocation operations. The m_sharedhdl member variable is the handle to the object’s shared memory block.

The m_mutex member variable is the handle to the object’s mutex object. This mutex controls access to the queue, making the queue thread-safe.

5.1.3.2 Message Types

All message objects used by the Host Emulator derive from the abstract HEMU_MESSAGE class. The following illustration shows a UML representation of the HEMU_MESSAGE base class:

[image: image3.emf]+HEMU_MESSAGE()

+operator =(in src : const HEMU_MESSAGE &) : HEMU_MESSAGE &

#HEMU_MESSAGE(in type : unsigned long, in sz : unsigned long)

+msg : unsigned long

+size : unsigned long

HEMU_MESSAGE

Figure 2. HEMU_MESSAGE Base Class
The first two data members in every message object are the message type ID (msg) and the size of the message in bytes. The default constructor is public to allow for creation of temporary objects. The parameterized version of the constructor is protected and is only called by derived classes during instantiation. An assignment operator is also implemented in the base class and will work on any two instances of the same derived type.

All of the derived message types may be categorized by sender and receiver. Win32-to-Driver messages are sent from the main (Win32) process to the driver. Driver-to-Win32 messages are sent from the driver to the main process. Finally, Win32-to-Win32 messages are passed reflexively within the Win32 process.

Table 2 lists the Win32-to-Driver messages and describes the use of each. These messages are posted from the main process whenever it needs to change the internal state of the driver or invoke a driver-controlled action.

Table 2. Win32-to-Driver Messages
	Message Name
	Action

	MESSAGE_ADD_ENTITY
	The driver will create an entity object that references a named shared data structure. The driver will add the address of the new object to the entity list.

	MESSAGE_DEL_ENTITY
	The driver will remove the pointer to the entity object from the entity list and call the object’s destructor. The destructor will close the handle to the shared data structure, decrementing its reference counter.

	MESSAGE_CLEAR_ENTITIES
	The driver will empty the entity list and call the destructor for each entity object.

	MESSAGE_ADD_VIEW
	The driver will create a view object that references a named shared data structure. The driver will add the address of the new object to the view list.

	MESSAGE_DEL_VIEW
	The driver will remove the pointer to the view object from the view list and call the object’s destructor. The destructor will close the handle to the shared data structure, decrementing its reference counter.

	MESSAGE_CLEAR_VIEWS
	The driver will empty the view list and call the destructor for each view object.

	MESSAGE_ADD_VIEWGROUP
	The driver will create a view group object that references a named shared data structure. The driver will add the address of the new object to the view group list.

	MESSAGE_DEL_VIEWGROUP
	The driver will remove the pointer to the view group object from the view group list and call the object’s destructor. The destructor will close the handle to the shared data structure, decrementing its reference counter.

	MESSAGE_CLEAR_VIEWGROUPS
	The driver will empty the view group list and call the destructor for each view group object.

	MESSAGE_RUN_EXERCISE
	The driver will set its RunState flag.

	MESSAGE_PAUSE_EXERCISE
	The driver will clear its RunState flag.

	MESSAGE_RESET_HOST
	The driver will clear its RunState flag. The main process currently resets the state of the scenario.

	MESSAGE_RESET_IG
	The driver will set the IG Mode parameter of the IG Control packet to Standby/Reset.

	MESSAGE_SHUTDOWN
	The driver will set the IG Mode parameter of the IG Control packet to Standby/Reset and signal the “Begin Shutdown” event.

	MESSAGE_SET_ADDR
	The driver will close all sockets and reinitialize all network connections with the specified IP address and port numbers.

	MESSAGE_ADD_HAT
	The driver will add a new HAT/HOT object to the HAT/HOT list.

	MESSAGE_REMOVE_HAT
	The driver will remove the HAT/HOT object from the HAT/HOT list.

	MESSAGE_ADD_LOS
	The driver will add a new LOS object to the LOS list.

	MESSAGE_REMOVE_LOS
	The driver will remove the LOS object from the LOS list.

	MESSAGE_BEGIN_RECORD
	The driver will open a file for writing and create a low-priority Record (write) thread. The thread will write all buffered outbound CIGI messages to the file.

	MESSAGE_END_RECORD
	The driver will signal a “Begin Record/Playback Stop” event and wait for an “End Record/Playback Stop” event. When the “End Record/Playback Stop” event is signaled, the driver will close the file.

	MESSAGE_BEGIN_PLAYBACK
	The driver will open a file for reading, create a low-priority Playback (read) thread, and set the OperateMode flag to MODE_PLAYBACK.

	MESSAGE_END_PLAYBACK
	The driver will signal a “Begin Record/Playback Stop” event. When the Playback thread detects this event, the thread will close the file and terminate.

	MESSAGE_PAUSE_RECPLAYBACK
	The driver will set the PauseRecPlaybackState flag.

	MESSAGE_RESUME_RECPLAYBACK
	The driver will clear the PauseRecPlaybackState flag.

	MESSAGE_SET_DATABASE
	The driver will clear the RunState flag and will move the entities to the new database. Each entity will retain its position relative to the database origin.

	MESSAGE_SET_TRACKER_STATE
	The driver will send a Motion Tracker Control packet to the IG specifying the state of the tracker. This functionality is not yet implemented.

	MESSAGE_SET_TRACKER_BORESIGHT
	The driver will send a Motion Tracker Control packet to the IG specifying the boresight state of the tracker. This functionality is not yet implemented.

	MESSAGE_SET_IG_MODE
	The driver will set the IG Mode parameter of the IG Control packet.

	MESSAGE_SET_HUD_STATE
	The driver will enable or disable outgoing HUD data. The HUD is turned off during compile time by default and may be enabled by defining the WITH_HUD preprocessor symbol. The HUD_DATA structure may be tailored to fit a given application.

	MESSATE_SET_BYTE_ORDER
	The driver will set or clear the BigEndian flag. When this flag is set, the Host Emulator will byte-swap outbound CIGI messages to simulate a big-endian platform.

Note that the driver will repost a message back to the same queue if the object referenced by that message is locked (see Section 5.2). This provides a built-in try-retry mechanism that allows the driver to be non-blocking.

Table 3 lists the Driver-to-Win32 messages. These messages are posted whenever the driver needs to notify the main process of some event or error condition or to force the GUI to be updated.

Table 3. Driver-to-Win32 Messages
	Message Name
	Description

	MESSAGE_PLAYBACK_EOF
	This indicates that the end of file has been reached during playback.

	MESSAGE_FILE_ERROR
	This indicates that the specified Record or Playback file cannot be opened.

	MESSAGE_FRAME_RATE
	This is sent periodically to indicate the current average data rate of the IG.

	MESSAGE_NO_CONNECT
	This is sent periodically when no data is received from an IG.

	MESSAGE_MISSILE_HIT
	This notifies the main process when a missile hits its target.

	MESSAGE_NOTIFY_ANIM_STOP
	This notifies the main process when the driver receives an Animation Stop Notification packet from the IG.

	MESSAGE_NOTIFY_CAPTURE_FRAME
	This signals the end of a frame while the driver is recording outbound CIGI messages. The main process uses this notification to present record progress information to the user.

	MESSAGE_WAYPOINT_REACHED
	This notifies the main process when an entity has reached a waypoint.

	MESSAGE_UPDATE_ENV_VIEW
	This forces the GUI to update the Environmental Properties view.

	MESSAGE_UPDATE_ENTITIES_VIEW
	This forces the GUI to update the Entity Properties view.

	MESSAGE_UPDATE_VIEWS_VIEW
	This forces the GUI to update the View Properties view.

	MESSAGE_UPDATE_ENV_TAB_PAGES
	This forces the GUI to update the tabbed property pages on the Environmental Properties view.

	MESSAGE_UPDATE_ENTITY_TAB_PAGES
	This forces the GUI to update the tabbed property pages on the Entity Properties view.

	MESSAGE_UPDATE_VIEW_TAB_PAGES
	This forces the GUI to update the tabbed property pages on the View Properties view.

Table 4 lists the reflexive Win32-to-Wn32 messages. These are sent and processed internally within the main process. This mechanism allows certain actions to be performed asynchronously and provides a method of internal communication between threads. These messages are useful for changing the states of widgets, timers, and other non-thread-safe objects.

Table 4. Win32-to-Win32 Reflexive Messages
	Message Name
	Description

	MESSAGE_SCRIPT_EOF
	This notifies the main thread when the end of the script file has been reached.

	MESSAGE_SCRIPT_PROGRESS
	This is sent periodically from the script processor thread to the main thread to indicate which line number within the script file is currently being executed.

	MESSAGE_DISPLAY_MSG_TEXT
	This causes the main thread to output a character string to the Messages window in the GUI. The Messages window provides textual information to the user.

	MESSAGE_SCRIPT_LOAD_SCENARIO
	This is sent to the main thread whenever a script specifies that a scenario file is to be loaded.

	MESSAGE_SCRIPT_SAVE_SCENARIO
	This is sent to the main thread whenever a script specifies that the simulation state should be saved to a file.

	MESSAGE_SCRIPT_RELOAD_SCENARIO
	This is sent to the main thread whenever a script specifies that the scenario should be reset to its saved state.

	MESSAGE_SCRIPT_CAPTURE_PLAY
	This is sent to the main thread whenever a script commands playback of a capture file.

	MESSAGE_CLEAR_MSG_TEXT
	This causes the main thread to clear the Messages window in the GUI.

	MESSAGE_UPDATE_DATABASE
	This causes the main thread to update the Database toolbar.

	MESSAGE_SPAWN_APP
	The causes the main thread to spawn a new process.

	MESSAGE_SCRIPT_BEGIN_WAIT_TIMER
	This causes the main thread to create a timer object and to reset the timer indicator in the Script window.

	MESSAGE_SCRIPT_INC_WAIT_TIMER
	This causes the main thread to update the timer indicator in the Script window.

	MESSAGE_SCRIPT_END_WAIT_TIMER
	This causes the main thread stop the script wait timer and update the timer indicator in the Script window.

	MESSAGE_SCRIPT_ADD_ENTITY_TO_GUI
	This causes the main thread to add an entity to the necessary GUI widgets. This is sent by the script thread after a new entity is created.

	MESSAGE_SCRIPT_DEL_ENTITY_FROM_GUI
	This causes the main thread to delete an entity from the necessary GUI widgets. This is sent by the script thread when an entity is destroyed.

	MESSAGE_SCRIPT_SET_PARENT_IN_GUI
	This causes the main thread to update the GUI widgets when an entity’s parent has changed.

	MESSAGE_SCRIPT_SET_VIEWGROUP_IN_GUI
	This causes the main thread to update the GUI widgets when a view’s group assignment has changed.

	MESSAGE_SCRIPT_SET_PAUSE
	This causes the main thread to set the state of the Pause button on the Script window.

Data access to the queue is protected by a mutex. The timeout period for this mutex is 1ms, which is the smallest timeout period allowed by the Win32 and RTX APIs. This timeout period means that the driver will wait at most 1ms for the queue resource to be released. If, however, the Win32 process is preempted before it can complete the enqueue operation, then the driver’s message will never be posted.

Note: An asynchronous message post operation will be incorporated into the driver in a future release.

5.2 Data Sharing

Entity, view, and view group state data are shared between the main process and driver. For RTX builds, the shared data structures are contained in non-paged kernel memory. This prevents paging operations in Windows from affecting RTX performance. For Win32 builds, the shared data structures are contained in a memory-mapped region of the system swap file.

Although an object’s data storage is shared, each process has its own address space and maps to the shared memory at a different logical address. Each instance of the object, therefore, must store its own pointer to the data. No object data are stored within the object itself.

All shared data objects are lockable. A shared object can be made lockable by performing a compare-and-set operation on a member variable used as a lock flag. When a thread needs to write to a data object, it performs a get-and-lock operation. After the thread writes to the data, it must perform an unlock operation.

Because the driver requires real-time or near-real-time performance, the driver has been designed to be wait-free. This means that the driver is able to achieve progress even if an object is locked. If the driver attempts to obtain a lock on an object that is currently locked, the driver will queue the object and retry after all other objects of that type have been processed. The driver will then retry until the object becomes unlocked. Real-world use has shown that in all likelihood an object will be released by the second or third attempt.

Unlike the driver, the main process does not require real-time performance and is not wait-free. If the main process attempts to lock an object that is currently locked, the process will sleep until the object is released. Because the driver never locks an object for more than a few microseconds, there should be no noticeable impact to the user.

The following diagram illustrates the design of the base class:

[image: image4.emf]+Create(in name : const char*) : HANDLE

+GetInstanceName() : const char *const

+SetLocked(in value : const TYPE &) : bool

+GetAndLock(out dest : TYPE*) : bool

+Unlock() : bool

+IsLocked() : bool

#Lock() : bool

#m_locked : long * <<volatile>>

#m_data : TYPE * <<volatile>>

-m_instancename[] : char

-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Object data

Lock flag

Shared Memory

Figure 3. Shared Object Base Class Design
The lock and unlock operations are atomic. In other words, the processor guarantees that once a thread checks the lock state, no other thread can execute until the first thread has set the new lock state. This means that a thread cannot be preempted even by the operating system during the check-lock operation. This behavior is made possible by the Pentium’s cmpxchg instruction. This instruction provides an atomic compare-and-exchange operation and locks the memory bus while the instruction is in the processor’s pipeline.

Neither C nor C++ provides a standard compare-and-exchange function, so a short assembly routine must provide this functionality. Because the old flag state does not need to be returned by the function, a compare-and-set routine is sufficient. Further, a Boolean return value from a compare-and-set operation is conceptually easier to use than the return value of a compare-and-exchange operation. Such a routine is shown in the figure below. Note that the inline assembly feature of Microsoft Visual C++ is used and that the assembly code has visibility to the variables declared in the C/C++ code above it.

[image: image5.emf]

long CAS(long *target, long expected, long newval) { int retval = 0; _asm { mov ECX, target ; ECX = target mov EAX, expected ; EAX = expected mov EBX, newval ; EBX = newval lock cmpxchg [ECX], EBX ; Atomic compare and swap ; if (EAX == *target) ; *target = EBX, ZF = 1 ; else ; EAX = *target, ZF = 0 jne LABEL_NOT_EQ ; if succeeded, then mov retval, 1h ; retval = TRUE LABEL_NOT_EQ: } return retval; }

Listing 1. Compare-And-Set (CAS) Routine
CAS() takes three arguments: a pointer target to an integer (in this case the lock flag), an expected value expected, and a new value newval. If the value pointed to by target matches the value of expected, then the integer pointed to by target is assigned the value newval and CAS() returns TRUE. If the value pointed to by target does not match the value of expected, then CAS() returns FALSE.

The shared object base class provides only one member accessor function, GetAndLock(), to retrieve a copy of the object’s data. GetAndLock() calls CAS(), passing in the address of the lock flag along with the expected value (0) and new value (1) for the flag. If CAS() returns TRUE, GetAndLock() retrieves a copy of the shared data structure and returns TRUE. If CAS() returns FALSE, then GetAndLock() will return FALSE.

Unfortunately, this mechanism can cause a deadlock if the same thread attempts to obtain a second lock on the object. The program, therefore, must be designed in such a way that no thread will attempt a lock on a locked object. Future enhancements to the shared object class might replace the lock flag with a thread handle (or NULL if not locked) and add a lock count member variable. Subsequent calls to GetAndLock() could increment the lock count as long as the thread handle remains the same. More research is needed to determine if this is an acceptable approach, as successive calls to GetAndLock() might return stale data.

Three classes derive from specializations of RTXSharedObj<>. These class types are described below.

5.2.1 CSharedEntityObj

The CSharedEntityObj class derives from RTXSharedObj<ENTITY> as shown in the UML diagram below:

[image: image6.emf]+Create(in name : const char*) : HANDLE

+Create() : HANDLE

+SetLocked(in value : const ENTITY &) : bool

+SetLockedDofs(in value : const DOF &) : bool

+GetAndLockDofs(out dest : <unspecified>*) : bool

+SetLockedRates(in value : const RATES &) : bool

+GetAndLockRates(out dest : <unspecified>*) : bool

+SetLockedCigiData(in value : const ENTITY_CIGI_DATA &) : bool

+GetAndLockCigiData(out dest : <unspecified>*) : bool

+SetLockedNonCigiData(in value : const ENTITY_NONCIGI_DATA &) : bool

+GetAndLockNonCigiData(out dest : <unspecified>*) : bool

+SetLockedUnsavedData(in value : const ENTITY_TEMP_DATA &) : bool

+GetAndLockUnsavedData(out dest : <unspecified>*) : bool

+ClearLockedChangeFlag() : bool

#m_InstanceCounter : unsigned int

CSharedEntityObj

+Create(in name : const char*) : HANDLE

+GetInstanceName() : const char *const

+SetLocked(in value : const TYPE &) : bool

+GetAndLock(out dest : TYPE*) : bool

+Unlock() : bool

+IsLocked() : bool

#Lock() : bool

#m_locked : long * <<volatile>>

#m_data : TYPE * <<volatile>>

-m_instancename[] : char

-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<ENTITY>

Figure 4. CSharedEntityObj UML Diagram
The ENTITY datatype is a struct that contains all entity state data that are needed by both the main process and the driver. ENTITY divides these data into three groups. The first group comprises the ENTITY_CIGI_DATA structure. These attributes correspond to parameters in the CIGI Entity Control packet. When an attribute contained within ENTITY_CIGI_DATA changes, the Host Emulator should send a new Entity Control packet to the IG. Note that the data in ENTITY_CIGI_DATA are persistent; on other words, the contents of this structure are saved to a scenario file.

The ENTITY_NONCIGI_DATA structure contains the second group of ENTITY attributes. This structure contains persistent, non-CIGI data. These are crucial attributes such as entity class, flight model, airspeed, etc., that describe entity behavior. These attributes are not, however, included in the Host-to-IG interface.

Finally, the ENTITY_TEMP_DATA structure contains the third group of attributes. These data are transient (not saved to a file) and are not part of the Host-to-IG interface. These data include waypoint information, values for integrating rotations and velocities over time, data-changed flags, and other information of a temporary nature.

Figure 5 shows a UML representation of the ENTITY datatype:

[image: image7.emf]+entity_class : bit field(4)

+collective : bit field(7)

+flymode : bit field(2)

+use_attach_point : bit

+attach_point : bit field(5)

+send_rates : bit

+target_id : long

+speed : double

«struct»

ENTITY_NONCIGI_DATA

+waypoint_id : unsigned long

+track_target : bit

+fly_waypoints : bit

+waypoint_valid : bit

+waypoint_reached : bit

+waypoint_type : bit field(2)

+roll_disable : bit

+destroy : bit

+cigi_has_changed : bit

+ramp_up_ctr : unsigned short

+yaw_ctr : unsigned short

+pitch_ctr : unsigned short

+roll_ctr : unsigned short

+ref_entity : long

+reserved : long

+accel : double

+speed_init : double

+speed_final : double

+turn_rate : double

+waypoint_x : double

+waypoint_y : double

+waypoint_z : double

+ddy : double

+ddp : double

+ddr : double

+vi : double

+vj : double

+dvi : double

+dvj : double

«struct»

ENTITY_TEMP_DATA

«struct»

ENTITY

+latitude : double

+longitude : double

+altitude : double

+yaw : double

+roll : double

+pitch : double

+offset_x : double

+offset_y : double

+offset_z : double

+rel_yaw : double

+rel_pitch : double

+rel_roll : double

«struct»DOF

+dx : double

+dy : double

+dz : double

+droll : double

+dpitch : double

+dyaw : double

«struct»RATES

+id : long

+type : long

+parent_id : long

+active : bit

+alpha : bit field(8)

+anim_state : bit field(2)

+anim_dir : bit

+anim_loop : bit

+inherit_alpha : bit

+clamp_mode : bit field(2)

+coll_detect : bit

«struct»

ENTITY_CIGI_DATA

-noncigi

-cigi

-dofs

-rates

Degrees of Freedom (DOF):

-World coordinates

 AND

-Parent-relative coordinates

Changing these data will provoke

a new Entity Control packet.

Non-CIGI attributes that are

saved to a scenario file.

Temporary, transient data.

-unsaved

Figure 5. The ENTITY Datatype
CSharedEntityObj extends the set of accessor functions by providing a pair of accessors to each of the nested child structures. This allows smaller, more closely related groups of data to be updated rather than the entire ENTITY structure. This is more efficient and more convenient to the programmer.

Note that ENTITY_TEMP_DATA structure contains a cigi_has_changed member. This member is set whenever one or more data within ENTITY::ENTITY_CIGI_DATA have changed. This tells the driver that a new Entity Control packet should be generated for the entity. CSharedEntityObj provides a method called ClearLockedChangFlag() that clears the cigi_has_changed in a single function call. The function fails if the object is not locked.

5.2.2 CSharedViewObj

CSharedViewObj derives from RTXSharedObj<VIEW>. This relationship is shown in Figure 6.

[image: image8.emf]+Create(in name : const char*) : HANDLE

+GetInstanceName() : const char *const

+SetLocked(in value : const TYPE &) : bool

+GetAndLock(out dest : TYPE*) : bool

+Unlock() : bool

+IsLocked() : bool

#Lock() : bool

#m_locked : long * <<volatile>>

#m_data : TYPE * <<volatile>>

-m_instancename[] : char

-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<VIEW>

+Create(in name : const char*) : HANDLE

+Create() : HANDLE

+SetLocked(in value : const VIEW &) : long

+SetLockedViewDef(in value : const VIEW_DEF_DATA &) : long

+GetAndLockViewDef(out dest : <unspecified>*) : long

+SetLockedViewCtrl(in value : const VIEW_CONTROL_DATA &) : long

+GetAndLockViewCtrl(out dest : <unspecified>*) : long

+SetLockedNonCigi(in value : const VIEW_NONCIGI_DATA &) : long

+GetAndLockNonCigi(out dest : <unspecified>*) : long

+ClearLockedChangeFlags() : long

#m_InstanceCounter : unsigned int

CSharedViewObj

Figure 6. CSharedViewObj UML Diagram

The VIEW datatype is composed of three child structures. The viewdef member is of type VIEW_DEF_DATA and contains data that are contained within the CIGI View Definition packet. The viewctrl member is of type VIEW_CONTROL_DATA and contains data that are in the View Control packet. Changes to either of these member structures should cause the driver to send one of these two CIGI packets. Finally, the noncigi member, a VIEW_NONCIGI_DATA structure, contains data that are not represented in CIGI. CSharedViewObj implements individual accessor functions for each of these members.

The VIEW structure is modeled in Figure 7.

[image: image9.emf]«struct»VIEW

+entity_id : bit field(16)

+offset_x_enable : bit

+offset_y_enable : bit

+offset_z_enable : bit

+yaw_enable : bit

+pitch_enable : bit

+roll_enable : bit

+reserved : unsigned int

+offset_x : float

+offset_y : float

+offset_z : float

+yaw : float

+pitch : float

+roll : float

«struct»

VIEW_CONTROL_DATA

+view_id : bit field(16)

+group_id : bit field(8)

+view_type : bit field(3)

+projection : bit

+replication : bit field(3)

+reorder : bit

+mirror_mode : bit field(2)

+fov_top_enable : bit

+fov_bottom_enable : bit

+fov_left_enable : bit

+fov_right_enable : bit

+fov_near_enable : bit

+fov_far_enable : bit

+fov_top : float

+fov_bottom : float

+fov_left : float

+fov_right : float

+fov_near : float

+fov_far : float

«struct»

VIEW_DEF_DATA

+def_has_changed : bit

+ctrl_has_changed : bit

+reserved : unsigned int

+dx : float

+dy : float

+dz : float

+dyaw : float

+dpitch : float

+droll : float

«struct»

VIEW_NONCIGI_DATA

-viewctrl

-noncigi

-viewdef

Changing these data should

provoke a new View Definition

packet.

Changing these data should

provoke a new View Control

packet.

Figure 7. The VIEW Datatype
The VIEW_NONCIGI_DATA structure contains two flags to indicate when CIGI data have been changed. The def_has_changed flag is set when one or more elements of the VIEW_DEF_DATA structure have changed, and the ctrl_has_changed flag is set when the VIEW_CONTROL_DATA structure has been changed.

CSharedViewObj provides a method called ClearLockedChangeFlags() that clears both flags in a single function call. The function fails if the object is not locked.

5.2.3 CSharedViewGroupObj

The CSharedViewGroupObj class derives from RTXSharedObj<VIEWGROUP>. This relationship is shown in Figure 8.

[image: image10.emf]+Create(in name : const char*) : HANDLE

+GetInstanceName() : const char *const

+SetLocked(in value : const TYPE &) : bool

+GetAndLock(out dest : TYPE*) : bool

+Unlock() : bool

+IsLocked() : bool

#Lock() : bool

#m_locked : long * <<volatile>>

#m_data : TYPE * <<volatile>>

-m_instancename[] : char

-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<VIEW>

+Create(in name : const char*) : HANDLE

+Create() : HANDLE

+SetLocked(in value : const VIEWGROUP &) : long

+SetLockedCigi(in value : const VIEWGROUP_CIGI_DATA &) : long

+GetAndLockCigi(out dest : <unspecified>*) : long

+SetLockedNonCigi(in value : const VIEWGROUP_NONCIGI_DATA &) : long

+GetAndLockNonCigi(out dest : <unspecified>*) : long

+ClearLockedChangeFlag() : long

#m_InstanceCounter : unsigned int

CSharedViewGroupObj

Figure 8. CSharedViewGroupObj UML Diagram
Like ENTITY and VIEW, VIEWGROUP is a composite datatype made up of child structures representing CIGI and non-CIGI data. These data members are called cigi and noncigi and are of the types VIEWGROUP_CIGI_DATA and VIEWGROUP_NONCIGI_DATA, respectively. Changes to the cigi member should cause the driver to send a View Control packet to the IG.

The VIEWGROUP datatype is modeled below in Figure 9.

[image: image11.emf]«struct»

VIEWGROUP

+group_id : bit field(8)

+offset_x_enable : bit

+offset_y_enable : bit

+offset_z_enable : bit

+yaw_enable : bit

+pitch_enable : bit

+roll_enable : bit

+entity_id : bit field(16)

+reserved : unsigned int

+offset_x : float

+offset_y : float

+offset_z : float

+yaw : float

+pitch : float

+roll : float

«struct»

VIEWGROUP_CIGI_DATA

+cigi_has_changed : bit

+dx : float

+dy : float

+dz : float

+dyaw : float

+dpitch : float

+droll : float

«struct»

VIEWGROUP_NONCIGI_DATA

-noncigi

-cigi

Changing these data should

provoke a new View Control

packet.

Figure 9. The VIEWGROUP Datatype
The cigi_has_changed flag within VIEWGROUP_NONCIGI_DATA indicates that the VIEGROUP’s cigi member has been modified. This flag can be cleared by calling CSharedViewGroupObj::ClearLockedChangeFlag().
5.3 CIGI Message Management

Version 2 of the Host Emulator used the CIGI API. With the release of CIGI 3.0, the API was replaced with the CIGI Class Library (CCL). For development of Version 3 of the Host Emulator, the CIGI API code was modified to support CIGI 3.x and was incorporated into the Host Emulator’s source code distribution. This was done because the Host Emulator was used in development and testing of the CCL. This provided a non-recursive test platform for the CCL.

Refer to the CIGI API Users’ Guide (http://cigi.sourceforge.net/manual/index.html) for details on the internal design of the API.
Note: The modified CIGI API code will be replaced with the CCL in a future release of the Host Emulator.

5.4 Main Process

The main process runs within the Win32 subsystem. This process handles all user interaction and performs file I/O for loading configuration settings and for scripting. The main process also interfaces with any additional system devices, components, and resources.

The paragraphs below describe the mechanisms used to load definition (configuration) files and to execute scripts.
5.4.1 Data Manager

The Data Manager is a centralized repository for all of the Host Emulator’s simulation data. It stores all shared objects, configuration data, terrain attributes, environmental weather properties, waypoints, HAT/HOT and LOS objects, system components, and IG events. The Data Manager object controls construction and destruction of these items, provides access to each, and performs serialization.

The Data Manager also performs certain updates to the GUI as necessary when objects’ states are changed, although this functionality will be moved outside the class in a future version of the Host Emulator.

5.4.2 Shared Objects

Entity, view, and view group data are stored in shared memory and are protected by the CSharedEntityObj, CSharedViewObj, and CSharedViewGroupObj classes, respectively. Within the main process, these objects are further abstracted through the CEntity, CCigiView, and CViewGroup classes, each of which encapsulates the corresponding shared memory class.

These higher-level classes are described below.

5.4.2.1 CEntity

CEntity provides the interface for all entity operations within the Win32 main program. This class derives from MFC’s CObject and overrides Serialize(). The default constructor is only used during serialization and is therefore protected.

CEntity encapsulates CSharedEntityObj as well as articulated parts, components, mission function objects, weather attributes, and waypoints. CEntity also contains the entity name and MFC control (widget) item handles and iterators for interfacing with the GUI.

CEntity provides accessor methods for most of the data contained within ENTITY. These accessors call the CSharedEntityObj::GetAndLock(). If the shared data are already locked, the accessor will sleep briefly and retry until the new lock can be obtained. In this way, the main process is blocking.

CEntity also contains a non-shared instance of the ENTITY_CIGI_DATA and ENTITY_NONCIGI_DATA structures. These members contain the initial state of the entity. When the user manually updates the entity’s state through the GUI, or when the entity state is loaded from a scenario (.sf3) file, these initial state structures are updated. When the scenario is reset, the shared data are populated from the structures. CEntity provides accessor methods for both structure-wise and member-wise reads and writes.

Because the driver does not need to update components and articulated parts in real-time, these objects are not part of the ENTITY structure. They are, however, associated with a particular entity and are therefore stored in CEntity. Attachment points, HAT/HOT and LOS objects, and collision detection objects are treated similarly. These objects are all stored in specializations of MFC’s CMap<> template class. CEntity exposes member functions to handle creation, deletion, and retrieval of these objects.

Waypoints are stored in a specialization of the CTSQueue<> (thread-safe queue) template class. CEntity provides member functions to add waypoints that are defined either in absolute (Geodetic) or relative positions.

When the program calls CEntity::FlyWaypoints(), the first waypoint is popped from the queue and placed in the shared ENTITY::ENTITY_TEMP_DATA structure. The fly_waypoints and waypoint_valid flags in that structure are set at this time, as well. The driver will calculate the new position closer to the waypoint each frame until the entity comes within a certain range; then, the driver will clear the waypoint_valid flag and post a MESSAGE_WAYPOINT_REACHED message to the main process. Note that the waypoint_reached flag in the ENTITY_TEMP_DATA structure is also set; however, the main process no longer checks this flag.
The GetWeatherAttributes() member function returns a WEATHER structure containing weather-specific attributes for weather entities.

The GetLaunchAnimList(), GetPersistentLaunchAnimList(), and GetDetonationAnimList() methods return linked lists (specializations of MFC’s CList<> template class) containing entity IDs of child animations for missile entities.

The ApplyTemplate() member function is used to build the entity from a configuration template. All entity attributes are initialized and default values are loaded from the template. Components, articulated parts, collision detection volumes and segments, and attachment points are also created from the template.
5.4.2.2 CCigiView

CCigiView provides the interface for all CIGI viewport operations within the main program. Note that the name CCigiView is used because CView is already defined within the global namespace by MFC.

Like CEntity, CCigiView derives from MFC’s CObject and overrides Serialize(). The default constructor is only used during serialization and is therefore protected.

CCigiView encapsulates CSharedViewObj. Accessor methods are provided to allow protected access to most of the data contained within the VIEW structure. These accessors call the CSharedEntityObj::GetAndLock() and will sleep and retry if necessary.
View components and initial states are handled the same way as with CEntity. Configuration from a template is handled the same way as with CEntity, as well.

5.4.2.3 CViewGroup

CViewGroup performs all CIGI view group operations within the main program. CViewGroup derives from CObject and encapsulates CViewGroupObj. CViewGroup provides accessor functions for the shared VIEWGROUP data, non-shared initial-state data, and components list.
5.4.3 Configuration Templates

The Host Emulator is configured by a set of text files (with a .def extension) that specify entity, view, view group, and terrain database definitions. All the files that make up a configuration set are contained in the same directory. The configuration set in the /Default subdirectory of the Host Emulator program directory is loaded when the program starts.

Changing the configuration set affects the terrain, views, view groups, and any entities that will be subsequently added. Existing entities are not overwritten.

Note that the .def files will be replaced by a more flexible configuration mechanism, perhaps based on Python, in the near future.

The Data Manager object is responsible for loading and reading the .def files. The CMainFrame::LoadEntityConfig() function opens the ENTITIES.DEF file for reading and calls CDataManager::LoadEntityTemplates(). The latter function begins reading the file into a buffer and, when an “ENTITY” block is encountered, creates a new entity template object. The template object parses the buffer as it populates its values, components, articulated parts, etc.

View, view group, and terrain templates are created in a similar manner.
5.4.4 Script Processor

The Host Emulator’s script processor runs as a dedicated thread. This thread opens a script file for writing, executes each line in the file, closes the file, and terminates.

Host Emulator scripts use very simple syntax conventions. Commands begin with the command keyword, no commands can span multiple lines, and there are no variables or conditional branching. These rules simplify the script-parsing code tremendously.

All command handlers are callback functions that are declared as follows:

long func(const char *buffer, const unsigned int linenum);
A specialization of CMap<> stores pointers to all of the callback functions. These pointers are indexed by the corresponding script command keyword. As the script processor reads a line of the script and extracts the keyword, it performs a lookup using the keyword. The processor then invokes the callback function retrieved from the map, passing in the buffer pointer and the current script line number.

The callback function will read the next line from the buffer by calling sscanf(). The function will then perform validity checks on that line’s parameters and will perform the required operations.
5.5 Driver

The driver is instantiated during initialization of the main process. The driver handles calculations of motion, network I/O, and file I/O during record and playback.

The paragraphs below describe the driver’s structure, the interactions between its multiple threads, the sequence of tasks performed in the main loop, the mechanism used for buffered record and playback functions, and the RTX API façade for creating Win32 builds.
5.5.1 Threads

The driver uses a multi-threaded model to ensure that critical tasks get priority over less critical ones. The multi-threaded approach also optimizes processor utilization by increasing the likelihood that the processor will be busy at any given time: while high-priority threads sleep or are in a wait state, lower-priority threads can be switched into context.

Four threads are created whenever the driver loads and initializes. These include the Main thread plus three additional compulsory threads that are created during driver initialization. These additional threads are the Send/Receive thread, the Shutdown thread, and a thread that monitors the main application (Win32) process for abnormal termination.

The sequence diagram below shows the creation of and interactions between the compulsory threads within the Driver’s process space. The diagram also shows the interaction with the main Win32 process.

[image: image12.emf]Main Thread Send/Receive Thread

Create

Shutdown Thread

Create

WaitforWin32ToDie Thread

Create

Create Events:

-StartShutdown

-EndShutdown

do

while StartShutdown

event not signaled

Signals EndShutdown Event

Main Process

Win32ProcDied Mutex Orphaned

StartShutdown Event

Checks Signal State Waits

Release

EndShutdown

{OR}

On MESSAGE_SHUTDOWN

Cleanup and

Release

StartShutdown

Driver Process

Win32 (Application)

Process

Signals

Signals

If Win32 Process

Aborts Unexpectedly

CIGI I/O

Process CIGI

Execute Host

Functions

Check Application

Message Queue

Initialize

Create

Figure 10. Driver Thread Sequence Diagram
The driver’s Main thread has the lowest priority of the compulsory threads. The Main thread simply calls Startup() and then waits for the EndShutdown event to be signaled. Startup() initializes the coordinate conversion library, the CIGI API, the message queues, and the sockets. Startup() also creates the BeginShutdown and EndShutdown events and the remaining compulsory threads.

The Send/Receive thread is the primary worker thread and has the highest priority of all the driver’s threads. This thread handles network I/O and updates the entity, view, view group, and mission function objects. This thread also performs message processing for Win32-to-Driver messages (see Section 5.1.3.2). The Send/Receive thread executes in a loop until the StartShutdown event is signaled.

The Shutdown thread simply waits for the StartShutdown event to be signaled. When the event is signaled, the Shutdown thread performs cleanup tasks and signals the EndShutdown event.

Finally, the WaitForWin32ToDie thread waits for the main Win32 application process to terminate abnormally. To do this the thread waits indefinitely on a mutex. If the application process does terminate abnormally, the mutex will be orphaned and thus the WaitForWin32ToDie thread can resume execution. The thread will then signal the StartShutdown event.

Two additional threads, Record and Read, are low-priority threads that are used for buffered disk I/O during recording and playback of CIGI messages. These threads are created by the Send/Receive thread as needed.

The following table lists the priorities of each of the driver’s threads:

Table 5. Driver Thread Priorities
	Thread
	Priority (RTX)
	Priority (Win32)

	Main
	RT_PRIORITY_MIN + 2
	THREAD_PRIORITY_NORMAL

	Send/Receive
	RT_PRIORITY_MAX
	THREAD_PRIORITY_ABOVE_NORMAL

	Shutdown
	RT_PRIORITY_MIN + 3
	THREAD_PRIORITY_NORMAL

	WaitForWin32ToDie
	RT_PRIORITY_MIN + 4
	THREAD_PRIORITY_NORMAL

	Read
	RT_PRIORITY_MIN
	THREAD_PRIORITY_BELOW_NORMAL

	Record
	RT_PRIORITY_MIN
	THREAD_PRIORITY_BELOW_NORMAL

The lowest priority level available in the RTX subsystem is RT_PRIORITY_MIN. Because they handle disk I/O, both the Read and Record threads are set to this priority level. These threads are mutually exclusive so they will never be created at the same time; therefore, they will never be competing for resources. The other threads are set at different priority levels in RTX to ensure predictable behavior.

Windows has fewer priority levels than RTX, and the Win32 API exposes only a limited subset for each process priority class. The Main, Send/Receive, and WaitForWin32ToDie threads are all given the default priority (THREAD_PRIORITY_NORMAL). This is acceptable given the performance limitations of Windows for real-time applications.

Note that on a single- or dual-CPU computer running Windows 2000 and Windows XP, using the THREAD_PRIORITY_TIME_CRITICAL priority level for the Send/Receive thread in the Win32 build does not improve performance from that with the THREAD_PRIORITY_ABOVE_NORMAL priority level. In fact, even on a dual-CPU computer, the performance of the system is diminished when the THREAD_PRIORITY_TIME_CRITICAL priority level is used. More experimentation is needed to determine the optimum priority assignments on a computer with four logical processors (e.g., two CPUs with HyperThreading or two dual-core CPUs).
5.5.2 Main Loop

The driver’s main program loop is executed by the Send/Receive thread. The thread’s entry point is the SendRcvThread() function defined in the HemuRtDrv.cpp file. The sequence diagram in Figure 11 shows the basic program flow of this thread:

[image: image13.emf]TCP/IP Stack

Driver::Send/Receive

Thread

Main (Win32) Process Driver::Record Thread

ReceivedMessage Event

[OperateMode = MODE_PLAYBACK]

Check for SOF Message

Send CIGI Response from Prev Loop

Send CIGI Response from Prev Loop (from File Buffer)

MESSAGE_NOTIFY_CAPTURE_FRAME

Queue CIGI Response & Size

Process SOF

Message

CigiStartMessage();

CigiEndMessage();

Get Next Buffered

CIGI Response

Queue CIGI Response & Size

Send HUD Data

[#define WITH_HUD]

[recording = TRUE] MESSAGE_NOTIFY_CAPTURE_FRAME

Process SOF

Message

CigiStartMessage();

Build CIGI

Response Message

CigiEndMessage();

MESSAGE_FRAME_RATE

Update Entity, View, and

View Group States

Process Driver Messages

do

while

StartShutdown

Event not

signaled

if Received

SOF Message

else

Sleep

MESSAGE_NO_CONNECT

Figure 11. Send/Receive Thread Sequence Diagram
The diagram above includes four objects. Two of driver’s threads are shown: the Send/Receive thread and the Record thread. The TCP/IP stack represents the network interface; interaction with the TCP/IP stack occurs through either the Berkeley Sockets or WinSock API, depending upon the target platform. Finally, the Main Process is the main Win32 application process.

The bulk of the Send/Receive thread is contained within a do-while loop. This loop executes until the StartShutdown event is signaled.

The first thing the Send/Receive thread does inside the loop is check the TCP/IP stack for a CIGI SOF (Start of Frame) message from the IG. If a message is received, then the thread will send the response message created during the previous frame and will then process the SOF message. If no SOF message is received, the thread will sleep for a short time and send a MESSAGE_NO_CONNECT message to the Win32 process.

When processing the SOF message, there are two possible paths of execution. If the driver is in Playback mode (OperateMode = MODE_PLAYBACK), then the CIGI response message will have been retrieved from the file buffer during the prior frame. A MESSAGE_NOTIFY_CAPTURE_FRAME message will then be sent to the Win32 process as a progress notification. The thread will then queue a copy of the response message (and the corresponding message size) to the Win32 process, process the received SOF message, and build the response message for the next successive frame. To build the message, the driver must call CigiBeginMessage() and CigiEndMessage() even though no packets will be explicitly added to the message. The message is instead populated from the contents of the playback (file) buffer.

If the driver is not in Playback mode, the other path is executed. The CIGI response message will have been build packet by packet during the prior frame. If a Record thread has been created, then the Send/Receive thread will place a copy of the response message in the record (file) buffer and will send a MESSAGE_NOTIFY_CAPTURE_FRAME message to the Win32 process. The Send/Receive thread will then process the SOF message and build the CIGI response message for the next frame.

After the conditional branch, after the CIGI messages have been processed and created, the Send/Receive thread will visit each entity, view, and view group and update their states. The thread will then process any messages on the Win32-to-Driver inter-process message queue (see Section 5.1.3.1). The loop will then start again.
5.5.3 Buffered Record and Playback

Record and playback of CIGI messages is handled by low-priority worker theads that read CIGI messages from a Record/Playback buffer and write them to disk, or vice versa. The buffer is actually a queue of type RTXSharedBufferQ (see Section 5.1.3.1 for details on this class). The queue maintains a circular array of buffers and the size of each CIGI message.

When the Rend/Receive thread handles a MESSAGE_BEGIN_RECORD message from the main process, the thread will call the StartRecord() function. This function opens the specified file for writing, creates the StartRecordShutdown and EndRecordShutdown events, and creates a low-priority Record thread.

The Send/Receive thread will store a copy of all outgoing CIGI messages in the Record/Playback buffer. The Record thread continually polls the Record/Playback queue and writes any CIGI messages to the file.

When the Send/Receive thread receives a MESSAGE_END_RECORD message, the Send/Receive thread will signal the StartRecordShutdown event. The Record thread will then signal the EndRecordShutdown event and terminate.

Playback of CIGI messages works similarly. A MESSAGE_BEGIN_PLAYBACK message will cause the Send/Receive thread to call StartPlayback(). This function opens the specified file for reading, creates the StartRecordShutdown and EndRecordShutdown events, sets the OperateMode flag to MODE_PLAYBACK, and creates a low-priority Read thread.

Note that the StartRecordShutdown and EndRecordShutdown events are used for both recording and playback. This is acceptable because execution of the Record and Read threads is mutually exclusive. In fact, both event objects were originally intended to be used with both threads; however, the word “Playback” was omitted from the event names to keep them short.

Once created, the Read thread will continually try to keep the Record/Playback buffer completely full with CIGI messages read from disk. Because the OperateMode flag is set to MODE_PLAYBACK, the Send/Receive thread will retrieve its next CIGI message from the buffer each frame.

When the Send/Receive thread receives a MESSAGE_END_PLAYBACK message it will set the EndRecordShutdown event. The Read thread will then set OperateMode to MODE_NORMAL and terminate.

5.5.4 RTX API Façade

For Win32 builds of the Host Emulator, a façade API has been created which implements a subset of the RTX API functions using the Win32 API. Most of the RTX functions have a direct Win32 analog and so the façade simply calls the corresponding Win32 function. Other façade functions implement similar functionality by using the mechanisms provided by the Win32 API.

Two functions in this façade, however, do not duplicate or simulate the behavior of the RTX functions with the same names. These functions are RtGetClockTimerPeriod() and RtGetClockResolution().

The RTX implementation of RtGetClockTimerPeriod() returns the period of one of the specified RTSS system clocks. The façade implementation actually calls QueryPerformanceFrequency(), which retrieves the frequency of Windows’ high-performance counter. The RTX implementation has no effect on the Host Emulator since the driver does not use the function’s return value.

The RTX version of RtGetClockResolution() returns the resolution of the specified RTSS clock. The façade implementation sets a module-level flag to force RtSleepFt() to truncate rather than round the value passed to it. The use of this façade is questionable since the façade’s behavior has nothing to do with that of the original function; however, the reuse of this function name is convenient because it already exists in the namespace of the RTX build and because the function is not otherwise called from within the Host Emulator.

Note: The RtGetClockTimerPeriod() and RtGetClockResolution() façades will be replaced with more appropriately named functions in a future release.
6. Abandoned Designs

Two approaches to the problem of non-blocking, synchronized access to shared data have been implemented in earlier versions of the Host Emulator. Both approaches had inherent problems and were abandoned. Both of these are documented in this section as lessons learned.
6.1 Unsynchronized Data Access

Version 2.x of the Host Emulator did not use any thread-level synchronization mechanisms for data access. This meant that one or more threads could be writing to an object’s data while another was reading it. Most of the time this caused no serious problems, as the GUI enforced data concurrency by forcing the user to “freeze” the simulation to modify an entity’s state data. However, many users requested the ability to change and entity’s state “on the fly,” requiring the need to add more sophisticated synchronization mechanisms.

6.2 Asynchronous Object Creation and Write
Versions 3.0.0 through 3.1.2 of the Host Emulator limited object creation and data write operations to the driver’s primary thread. Read operations were unsynchronized and could be performed by any thread within either process.

When a new object needed to be created, the main process would send a message to the driver containing the object name, ID, and possibly some initial data. At some point during its main loop, the driver would process the message and create the object. The main process would sleep for a short amount of time or, in later versions, wait for a creation acknowledgement message from the driver. The main process would then be free to act upon the object.

Writes were also performed only by the driver. The main process would send a message to the driver containing all the object state data. The driver’s primary thread would process the message and update the object.

The above approach worked satisfactorily for user interaction through the GUI. The wait time or latency after a user action occurred was minimal and was generally not noticeable.

Unfortunately, asynchronous creation and writes broke down during the execution of scripts. The script processor thread is designed to execute as many lines as possible until one of the wait commands is encountered or until the outgoing message buffer is full. The thread, therefore, does not have time to sleep or to wait for the acknowledgement message from the driver. Requiring the script thread to wait or sleep would cause scripts to run slowly because the thread would have to wait at least one frame between commands that act upon the same object. The listing below shows a sample script snippet and the implicit waits that would be produced by asynchronous writes:

[image: image14.emf]

ADD_ENTITY 0 0 ENTITY_LATITUDE 0 36.5 ENTITY_LONGITUDE 0 - 76.0 ENTITY_ALTITUDE 0 1000 ENTITY_YAW 0 15.0 ENTITY_ADD 1 103 ENTITY_POS_RELATIVE 1 0 0 50.0 ...

Implicit Wait

Implicit Wait

Implicit Wait

Implicit Wait

Implicit Wait

1: 2: 3: 4: 5: 6: 7:

Listing 2. Example Script with Implicit Waits
Removing the waits would cause data concurrency problems. Using the example in Listing 2 above, the script processor would execute Line 1 and would send a message to the driver. The script processor would then immediately execute Line 2; however, the driver would likely not have time to process the message and create the entity so Line 2, as well as Lines 3 through 5, would be acting upon a non-existent entity.

Assuming the entity had been created successfully, the script processor would process Line 2, the entity’s state would be read, and a message would be sent to the driver to update the entity’s position with the new latitude. The script processor would then immediately process Line 3, and the entity’s state would be read once more. Again, the driver would likely not have time to process the message containing the new latitude, so the data read would contain the previous latitude. This

Because neither the implicit waits nor the lack of data concurrency were acceptable, the asynchronous data access mechanism was circumvented. The shared object classes were subclassed and the accessor methods overridden to allow the script processor direct access to the shared memory. Unfortunately, this reintroduced the problems inherent with the unsynchronized architecture described in Section 6.1 and caused additional errors.

7. Acronyms

CIGI – Common Image Generator Interface

GDI – Graphics Device Interface

GUI – Graphical User Interface

HAT – Height Above Terrain

HOT – Height of Terrain

IG – Image Generator

IPC – Inter-Process Communication

LOS – Line of Sight

RTSS – Real-Time Subsystem (the RTX runtime environment)

SOF – Start of Frame

UML – Unified Modeling Language

� EMBED Word.Picture.8 ���

Inspiration, Innovation & Integration

Training &

Support

Technology

McDonnell Douglas Corporation proprietary rights are included in the information disclosed herein. Recipient by accepting this document agrees that neither this document nor the information disclosed herein nor any part thereof shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or for any other purpose except as specifically authorized in writing by McDonnell Douglas Corporation.

Copyright Unpublished – 2005

All rights reserved under the copyright laws by McDonnell Douglas Corporation.

_1196159211.vsd
+HEMU_MESSAGE()
+operator =(in src : const HEMU_MESSAGE &) : HEMU_MESSAGE &
#HEMU_MESSAGE(in type : unsigned long, in sz : unsigned long)

+msg : unsigned long
+size : unsigned long

HEMU_MESSAGE

_1196242480.vsd
+Create(in name : const char*) : HANDLE
+GetInstanceName() : const char *const
+SetLocked(in value : const TYPE &) : bool
+GetAndLock(out dest : TYPE*) : bool
+Unlock() : bool
+IsLocked() : bool
#Lock() : bool

#m_locked : long * <<volatile>>
#m_data : TYPE * <<volatile>>
-m_instancename[] : char
-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<VIEW>

+Create(in name : const char*) : HANDLE
+Create() : HANDLE
+SetLocked(in value : const VIEW &) : long
+SetLockedViewDef(in value : const VIEW_DEF_DATA &) : long
+GetAndLockViewDef(out dest : <unspecified>*) : long
+SetLockedViewCtrl(in value : const VIEW_CONTROL_DATA &) : long
+GetAndLockViewCtrl(out dest : <unspecified>*) : long
+SetLockedNonCigi(in value : const VIEW_NONCIGI_DATA &) : long
+GetAndLockNonCigi(out dest : <unspecified>*) : long
+ClearLockedChangeFlags() : long

#m_InstanceCounter : unsigned int

CSharedViewObj

_1196244964.vsd
«struct»
VIEWGROUP

+group_id : bit field(8)
+offset_x_enable : bit
+offset_y_enable : bit
+offset_z_enable : bit
+yaw_enable : bit
+pitch_enable : bit
+roll_enable : bit
+entity_id : bit field(16)
+reserved : unsigned int
+offset_x : float
+offset_y : float
+offset_z : float
+yaw : float
+pitch : float
+roll : float

«struct»
VIEWGROUP_CIGI_DATA

+cigi_has_changed : bit
+dx : float
+dy : float
+dz : float
+dyaw : float
+dpitch : float
+droll : float

«struct»
VIEWGROUP_NONCIGI_DATA

-cigi

-noncigi

Changing these data should

provoke a new View Control

packet.

_1196245157.vsd
«struct»VIEW

+entity_id : bit field(16)
+offset_x_enable : bit
+offset_y_enable : bit
+offset_z_enable : bit
+yaw_enable : bit
+pitch_enable : bit
+roll_enable : bit
+reserved : unsigned int
+offset_x : float
+offset_y : float
+offset_z : float
+yaw : float
+pitch : float
+roll : float

«struct»
VIEW_CONTROL_DATA

+view_id : bit field(16)
+group_id : bit field(8)
+view_type : bit field(3)
+projection : bit
+replication : bit field(3)
+reorder : bit
+mirror_mode : bit field(2)
+fov_top_enable : bit
+fov_bottom_enable : bit
+fov_left_enable : bit
+fov_right_enable : bit
+fov_near_enable : bit
+fov_far_enable : bit
+fov_top : float
+fov_bottom : float
+fov_left : float
+fov_right : float
+fov_near : float
+fov_far : float

«struct»
VIEW_DEF_DATA

+def_has_changed : bit
+ctrl_has_changed : bit
+reserved : unsigned int
+dx : float
+dy : float
+dz : float
+dyaw : float
+dpitch : float
+droll : float

«struct»
VIEW_NONCIGI_DATA

-viewdef

-viewctrl

-noncigi

Changing these data should

provoke a new View Definition

packet.

Changing these data should

provoke a new View Control

packet.

_1196244110.vsd
+Create(in name : const char*) : HANDLE
+GetInstanceName() : const char *const
+SetLocked(in value : const TYPE &) : bool
+GetAndLock(out dest : TYPE*) : bool
+Unlock() : bool
+IsLocked() : bool
#Lock() : bool

#m_locked : long * <<volatile>>
#m_data : TYPE * <<volatile>>
-m_instancename[] : char
-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<VIEW>

+Create(in name : const char*) : HANDLE
+Create() : HANDLE
+SetLocked(in value : const VIEWGROUP &) : long
+SetLockedCigi(in value : const VIEWGROUP_CIGI_DATA &) : long
+GetAndLockCigi(out dest : <unspecified>*) : long
+SetLockedNonCigi(in value : const VIEWGROUP_NONCIGI_DATA &) : long
+GetAndLockNonCigi(out dest : <unspecified>*) : long
+ClearLockedChangeFlag() : long

#m_InstanceCounter : unsigned int

CSharedViewGroupObj

_1196242276.vsd
+Create(in name : const char*) : HANDLE
+Create() : HANDLE
+SetLocked(in value : const ENTITY &) : bool
+SetLockedDofs(in value : const DOF &) : bool
+GetAndLockDofs(out dest : <unspecified>*) : bool
+SetLockedRates(in value : const RATES &) : bool
+GetAndLockRates(out dest : <unspecified>*) : bool
+SetLockedCigiData(in value : const ENTITY_CIGI_DATA &) : bool
+GetAndLockCigiData(out dest : <unspecified>*) : bool
+SetLockedNonCigiData(in value : const ENTITY_NONCIGI_DATA &) : bool
+GetAndLockNonCigiData(out dest : <unspecified>*) : bool
+SetLockedUnsavedData(in value : const ENTITY_TEMP_DATA &) : bool
+GetAndLockUnsavedData(out dest : <unspecified>*) : bool
+ClearLockedChangeFlag() : bool

#m_InstanceCounter : unsigned int

CSharedEntityObj

+Create(in name : const char*) : HANDLE
+GetInstanceName() : const char *const
+SetLocked(in value : const TYPE &) : bool
+GetAndLock(out dest : TYPE*) : bool
+Unlock() : bool
+IsLocked() : bool
#Lock() : bool

#m_locked : long * <<volatile>>
#m_data : TYPE * <<volatile>>
-m_instancename[] : char
-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Derives from

RTXSharedObj<ENTITY>

_1196240771.vsd
Text

TCP/IP Stack

Driver::Send/Receive
Thread

Main (Win32) Process

Check for SOF Message

if Received
SOF Message

[OperateMode = MODE_PLAYBACK]

Driver::Record Thread

ReceivedMessage Event

else

Sleep

Send CIGI Response from Prev Loop

Send CIGI Response from Prev Loop (from File Buffer)

MESSAGE_NOTIFY_CAPTURE_FRAME

Queue CIGI Response & Size

Send HUD Data

Process SOF Message

CigiStartMessage();
CigiEndMessage();

Get Next Buffered CIGI Response

Queue CIGI Response & Size

[#define WITH_HUD]

[recording = TRUE] MESSAGE_NOTIFY_CAPTURE_FRAME

Process SOF Message

CigiStartMessage();

Build CIGI Response Message

CigiEndMessage();

MESSAGE_FRAME_RATE

Update Entity, View, and View Group States

Process Driver Messages

do

while
StartShutdown
Event not
signaled

MESSAGE_NO_CONNECT

_1195986010.vsd
+Create(in name : const char*) : HANDLE
+GetInstanceName() : const char *const
+SetLocked(in value : const TYPE &) : bool
+GetAndLock(out dest : TYPE*) : bool
+Unlock() : bool
+IsLocked() : bool
#Lock() : bool

#m_locked : long * <<volatile>>
#m_data : TYPE * <<volatile>>
-m_instancename[] : char
-m_sharedhdl : HANDLE

RTXSharedObj

TYPE

Object data

Lock flag

Shared Memory

_1196055989.vsd
+entity_class : bit field(4)
+collective : bit field(7)
+flymode : bit field(2)
+use_attach_point : bit
+attach_point : bit field(5)
+send_rates : bit
+target_id : long
+speed : double

«struct»
ENTITY_NONCIGI_DATA

+waypoint_id : unsigned long
+track_target : bit
+fly_waypoints : bit
+waypoint_valid : bit
+waypoint_reached : bit
+waypoint_type : bit field(2)
+roll_disable : bit
+destroy : bit
+cigi_has_changed : bit
+ramp_up_ctr : unsigned short
+yaw_ctr : unsigned short
+pitch_ctr : unsigned short
+roll_ctr : unsigned short
+ref_entity : long
+reserved : long
+accel : double
+speed_init : double
+speed_final : double
+turn_rate : double
+waypoint_x : double
+waypoint_y : double
+waypoint_z : double
+ddy : double
+ddp : double
+ddr : double
+vi : double
+vj : double
+dvi : double
+dvj : double

«struct»
ENTITY_TEMP_DATA

«struct»
ENTITY

+latitude : double
+longitude : double
+altitude : double
+yaw : double
+roll : double
+pitch : double
+offset_x : double
+offset_y : double
+offset_z : double
+rel_yaw : double
+rel_pitch : double
+rel_roll : double

«struct»DOF

+dx : double
+dy : double
+dz : double
+droll : double
+dpitch : double
+dyaw : double

«struct»RATES

+id : long
+type : long
+parent_id : long
+active : bit
+alpha : bit field(8)
+anim_state : bit field(2)
+anim_dir : bit
+anim_loop : bit
+inherit_alpha : bit
+clamp_mode : bit field(2)
+coll_detect : bit

«struct»
ENTITY_CIGI_DATA

-cigi

-noncigi

-unsaved

-dofs

-rates

Degrees of Freedom (DOF):

- World coordinates

 AND

- Parent-relative coordinates

Changing these data will provoke

a new Entity Control packet.

Non-CIGI attributes that are

saved to a scenario file.

Temporary, transient data.

_1196155551.vsd
Text

Main Thread

Send/Receive Thread

Create

Shutdown Thread

Create

Signals EndShutdown Event

WaitforWin32ToDie Thread

Create

Initialize

do

while StartShutdown
event not signaled

Create Events:
-StartShutdown
-EndShutdown

Cleanup and Release StartShutdown

Main Process

Win32ProcDied Mutex Orphaned

StartShutdown Event

Checks Signal State

Waits

Release EndShutdown

{OR}

Driver Process

Win32 (Application) Process

Signals

Signals

CIGI I/O

On MESSAGE_SHUTDOWN

If Win32 Process

Aborts Unexpectedly

Process CIGI

Execute Host Functions

Check Application Message Queue

Create

_1195460322.doc

ADD_ENTITY		0	0

ENTITY_LATITUDE	0	36.5	

ENTITY_LONGITUDE	0	-76.0

ENTITY_ALTITUDE	0	1000

ENTITY_YAW		0	15.0

ENTITY_ADD		1	103

ENTITY_POS_RELATIVE	1	0	0	50.0

...

Implicit Wait

Implicit Wait

Implicit Wait

Implicit Wait

Implicit Wait

1:

2:

3:

4:

5:

6:

7:

_1195985760.vsd
+RTXSharedBufferQ()
+~RTXSharedBufferQ()
+Create(in name : const char*, in buffcount : const long, in buffsize : const long) : long
+GetSize() : long
+GetItemCount() : long
+Push(in buffer : const char*, in length : const long) : long
+Pop(in buffer : char*, in length : const long) : long

-m_bufflengths : long *
-m_size : long *
-m_bottom : long *
-m_top : long *
-m_itemcount : long *
-m_data : char **
-m_instancename : char *
-m_mutex : HANDLE
-m_sharedhdl : HANDLE

RTXSharedBufferQ

BufferPointers [0-n]

BufferLengths [0-n]

Shared Memory

Queue Size

Bottom Index

Top Index

Item count

InstanceName []

Buffer_0 []

Buffer_n []

...

Buffer_1 []

Heap

_1195460013.doc

long CAS(long *target, long expected, long newval)

{

	int retval = 0;

	_asm

	{

		mov ECX, target		; ECX = target

		mov EAX, expected		; EAX = expected

		mov EBX, newval		; EBX = newval

		lock cmpxchg [ECX], EBX	; Atomic compare and swap

						; if (EAX == *target)

						; *target = EBX, ZF = 1

						; else

						; EAX = *target, ZF = 0

		jne LABEL_NOT_EQ		; if succeeded, then

		mov retval, 1h		; retval = TRUE

	LABEL_NOT_EQ:

	}

	

	return retval;

}

_1053239259.doc
[image: image1.png]

